Grabarits, András and Kormos, Márton and Lovas, Izabella (2022) Superdiffusive quantum work and adiabatic quantum evolution in finite temperature chaotic Fermi systems. PHYSICAL REVIEW B CONDENSED MATTER AND MATERIALS PHYSICS, 106 (064201). ISSN 1098-0121
Text
workPRB_resub.pdf - Accepted Version Restricted to Registered users only Download (904kB) |
Abstract
We study the full distribution of quantum work in generic, noninteracting, disordered fermionic nanosystems at finite temperature. We derive an analytical determinant formula for the characteristic function of work statistics for quantum quenches starting from a thermal initial state. For work small compared to the thermal energy of the Fermi gas, work distribution is Gaussian, and the variance of work is proportional to the average work, while in the low temperature or large work limit, a non-Gaussian distribution with superdiffusive work fluctuations is observed. Similarly, the time dependence of the probability of adiabaticity crosses over from an exponential to a stretched exponential behavior. For large enough average work, the work distribution becomes universal, and depends only on the temperature and the mean work. Apart from initial low temperature transients, work statistics are well-captured by a Markovian energy-space diffusion process of hardcore particles, starting from a thermal initial state. Our findings can be verified by measurements on nanoscale circuits or via single qubit interferometry.
Item Type: | Article |
---|---|
Subjects: | Q Science / természettudomány > QC Physics / fizika > QC06 Physics of condensed matter / szilárdtestfizika |
Depositing User: | Márton Kormos |
Date Deposited: | 21 Sep 2022 11:10 |
Last Modified: | 21 Sep 2022 11:10 |
URI: | http://real.mtak.hu/id/eprint/149221 |
Actions (login required)
Edit Item |