Benjamini, Itai and Fraczyk, Mikolaj and Kun, Gábor (2022) Expander spanning subgraphs with large girth. ISRAEL JOURNAL OF MATHEMATICS. pp. 1-11. ISSN 0021-2172 (Submitted)
|
Text
2012.pdf Available under License Creative Commons Attribution. Download (148kB) | Preview |
Abstract
We conjecture that finite graphs with positive Cheeger constant admit a spanning subgraph with positive Cheeger constant and girth proportional to the diameter. We prove this conjecture for regular expander graphs with large expansion. Our proof relies on the Local Lemma.
Item Type: | Article |
---|---|
Subjects: | Q Science / természettudomány > QA Mathematics / matematika > QA166-QA166.245 Graphs theory / gráfelmélet |
SWORD Depositor: | MTMT SWORD |
Depositing User: | MTMT SWORD |
Date Deposited: | 28 Sep 2022 14:06 |
Last Modified: | 24 Apr 2023 11:50 |
URI: | http://real.mtak.hu/id/eprint/150425 |
Actions (login required)
Edit Item |