Szabó, Réka and Vető, Bálint (2016) Ages of Records in Random Walks. JOURNAL OF STATISTICAL PHYSICS, 165 (6). pp. 1086-1101. ISSN 0022-4715
|
Text
1510.01152.pdf Available under License Creative Commons Attribution. Download (236kB) | Preview |
Official URL: https://doi.org/10.1007/s10955-016-1671-0
Abstract
We consider random walks with continuous and symmetric step distributions. We prove universal asymptotics for the average proportion of the age of the kth longest lasting record for $$k=1,2,\ldots $$ k = 1 , 2 , ... and for the probability that the record of the kth longest age is broken at step n. Due to the relation to the Chinese restaurant process, the ranked sequence of proportions of ages converges to the Poisson–Dirichlet distribution.
Item Type: | Article |
---|---|
Subjects: | Q Science / természettudomány > QC Physics / fizika |
SWORD Depositor: | MTMT SWORD |
Depositing User: | MTMT SWORD |
Date Deposited: | 29 Sep 2023 14:11 |
Last Modified: | 29 Sep 2023 14:11 |
URI: | http://real.mtak.hu/id/eprint/175756 |
Actions (login required)
![]() |
Edit Item |