Somlai, Gábor (2015) Non-expander Cayley graphs of simple groups. COMMUNICATIONS IN ALGEBRA, 43 (3). pp. 1156-1175. ISSN 0092-7872
|
Text
1302.1629.pdf Available under License Creative Commons Attribution. Download (231kB) | Preview |
Official URL: https://doi.org/10.1080/00927872.2013.865041
Abstract
For every infinite sequence of simple groups of Lie type of growing rank we exhibit connected Cayley graphs of degree at most 10 such that the isoperimetric number of these graphs converges to 0. This proves that these graphs do not form a family of expanders.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | RANK; expander; simple group; FINITE SIMPLE-GROUPS; UNIVERSAL LATTICES; |
Subjects: | Q Science / természettudomány > QA Mathematics / matematika |
SWORD Depositor: | MTMT SWORD |
Depositing User: | MTMT SWORD |
Date Deposited: | 09 Oct 2023 15:59 |
Last Modified: | 09 Oct 2023 15:59 |
URI: | http://real.mtak.hu/id/eprint/176364 |
Actions (login required)
![]() |
Edit Item |