Böhm, Gabriella Eszter and Gomez-Torrecillas, J. and Lopez-Centella, E. (2015) Weak multiplier bialgebras. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 367 (12). pp. 8681-8721. ISSN 0002-9947
|
Text
1306.1466.pdf Available under License Creative Commons Attribution. Download (418kB) | Preview |
Abstract
A non-unital generalization of weak bialgebra is proposed with a multi- plier-valued comultiplication. Certain canonical subalgebras of the multiplier algebra (named the ‘base algebras’) are shown to carry coseparable co-Frobenius coalgebra structures. Appropriate modules over a weak multiplier bialgebra are shown to consti- tute a monoidal category via the (co)module tensor product over the base (co)algebra. The relation to Van Daele and Wang’s (regular and arbitrary) weak multiplier Hopf algebra is discussed.
Item Type: | Article |
---|---|
Subjects: | Q Science / természettudomány > QA Mathematics / matematika |
SWORD Depositor: | MTMT SWORD |
Depositing User: | MTMT SWORD |
Date Deposited: | 04 Dec 2023 14:55 |
Last Modified: | 04 Dec 2023 14:55 |
URI: | http://real.mtak.hu/id/eprint/181761 |
Actions (login required)
![]() |
Edit Item |