Yajima, T.Hiroyuki and Nagahama, Hiroyuki (2008) Nonlinear dynamical systems and KCC-theory. ACTA MATHEMATICA ACADEMIAE PAEDAGOGICAE NYÍREGYHÁZIENSIS, 24 (1). pp. 179-189. ISSN 0866-0174
|
Text
amapn24_16.pdf Download (186kB) | Preview |
Official URL: http://www.emis.de/journals/AMAPN/index.html
Abstract
Nonlinear dynamical systems can be uniquely investigated by a geometric theory (KCC-theory). The five KCC-invariants express intrinsic properties of the nonlinear dynamical systems. The second invariant as a curvature tensor determines the stability of the systems. The third invariant as a torsion tensor expresses the chaotic behavior. As an example, the KCC-theory is applied to a geodynamical system (the Rikitake system).
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Nonlinear dynamical systems, Rikitate system, KCC-theory, Finsler geometry, topological invariant |
Subjects: | Q Science / természettudomány > QA Mathematics / matematika |
SWORD Depositor: | MTMT SWORD |
Depositing User: | Zsolt Baráth |
Date Deposited: | 01 Feb 2024 11:40 |
Last Modified: | 01 Feb 2024 11:40 |
URI: | http://real.mtak.hu/id/eprint/186985 |
Actions (login required)
![]() |
Edit Item |