Aleandro, María J. (2023) Derivations of convolution algebras on finite permutation semigroups. ACTA MATHEMATICA ACADEMIAE PAEDAGOGICAE NYÍREGYHÁZIENSIS, 34 (1). pp. 57-64. ISSN 1786-0091
|
Text
2434.pdf Download (312kB) | Preview |
Official URL: http://www.emis.de/journals/AMAPN/index.html
Abstract
If n ∈ N let Sn be the lexicographically ordered discrete semigroup of permutations of {1, . . . , n}. Our matter is to seek about the structure and behauviour of derivations of the convolution algebra l 1 (Sn). This problem has its own interest even in the finite case and emerges from studies of several kinds of amenability on Banach algebras supported on infinite discrete groups or semigroups.
Item Type: | Article |
---|---|
Subjects: | Q Science / természettudomány > QA Mathematics / matematika |
SWORD Depositor: | MTMT SWORD |
Depositing User: | Zsolt Baráth |
Date Deposited: | 08 Feb 2024 08:35 |
Last Modified: | 08 Feb 2024 08:35 |
URI: | http://real.mtak.hu/id/eprint/187850 |
Actions (login required)
![]() |
Edit Item |