REAL

Derivations of convolution algebras on finite permutation semigroups

Aleandro, María J. (2023) Derivations of convolution algebras on finite permutation semigroups. ACTA MATHEMATICA ACADEMIAE PAEDAGOGICAE NYÍREGYHÁZIENSIS, 34 (1). pp. 57-64. ISSN 1786-0091

[img]
Preview
Text
2434.pdf

Download (312kB) | Preview

Abstract

If n ∈ N let Sn be the lexicographically ordered discrete semigroup of permutations of {1, . . . , n}. Our matter is to seek about the structure and behauviour of derivations of the convolution algebra l 1 (Sn). This problem has its own interest even in the finite case and emerges from studies of several kinds of amenability on Banach algebras supported on infinite discrete groups or semigroups.

Item Type: Article
Subjects: Q Science / természettudomány > QA Mathematics / matematika
SWORD Depositor: MTMT SWORD
Depositing User: Zsolt Baráth
Date Deposited: 08 Feb 2024 08:35
Last Modified: 08 Feb 2024 08:35
URI: http://real.mtak.hu/id/eprint/187850

Actions (login required)

Edit Item Edit Item