Kristály, Alexandru and Rudas, Imre J. (2015) Elliptic problems on the ball endowed with Funk-type metrics. Nonlinear Analysis: Theory, Methods & Applications, 119. pp. 199-208. ISSN 0362-546X
![]() |
Text
Kristaly-Rudas.pdf Restricted to Registered users only Download (444kB) |
Abstract
We study Sobolev spaces on the nn-dimensional unit ball Bn(1)Bn(1) endowed with a parameter-depending Finsler metric FaFa, a∈[0,1]a∈[0,1], which interpolates between the Klein metric (a=0)(a=0) and Funk metric (a=1)(a=1), respectively. We show that the standard Sobolev space defined on the Finsler manifold (Bn(1),Fa)(Bn(1),Fa) is a vector space if and only if a∈[0,1)a∈[0,1). Furthermore, by exploiting variational arguments, we provide non-existence and existence results for sublinear elliptic problems on (Bn(1),Fa)(Bn(1),Fa) involving the Finsler–Laplace operator whenever a∈[0,1)a∈[0,1).
Item Type: | Article |
---|---|
Subjects: | Q Science / természettudomány > QA Mathematics / matematika |
Depositing User: | Dr. Alexandru Kristaly |
Date Deposited: | 09 Sep 2015 13:44 |
Last Modified: | 09 Sep 2015 13:49 |
URI: | http://real.mtak.hu/id/eprint/26095 |
Actions (login required)
![]() |
Edit Item |