REAL

Choosability and paintability of the lexicographic product of graphs

Keszegh, Balázs and Zhu, Xuding (2016) Choosability and paintability of the lexicographic product of graphs. DISCRETE APPLIED MATHEMATICS. ISSN 0166-218X (Submitted)

[img]
Preview
Text
2015-12-07.pdf

Download (261kB) | Preview

Abstract

This paper studies the choice number and paint number of the lexicographic product of graphs. We prove that if $G$ has maximum degree $\Delta$, then for any graph $H$ on $n$ vertices $\ch(G[H]) \le (4\Delta+2)(\ch(H) +\log_2 n)$ and $\olch(G[H]) \le (4\Delta+2) (\olch(H)+ \log_2 n)$.

Item Type: Article
Subjects: Q Science / természettudomány > QA Mathematics / matematika > QA166-QA166.245 Graphs theory / gráfelmélet
Depositing User: Balázs Keszegh
Date Deposited: 03 Oct 2016 10:40
Last Modified: 03 Oct 2016 10:40
URI: http://real.mtak.hu/id/eprint/40916

Actions (login required)

Edit Item Edit Item