REAL

Topological rigidity of compact manifolds supporting Sobolev-type inequalities

Farkas, Csaba and Kristály, Alexandru and Mester, Ágnes (2018) Topological rigidity of compact manifolds supporting Sobolev-type inequalities. (Submitted)

[img]
Preview
Text
Sobolev_inequality_compact.pdf

Download (411kB) | Preview

Abstract

Let (M,g) be an n-dimensional (n≥3) compact Riemannian manifold with Ric(M,g)≥(n−1)g. If (M,g) supports an AB-type critical Sobolev inequality with Sobolev constants close to the optimal ones corresponding to the standard unit sphere (Sn,g0), we prove that (M,g) is topologically close to (Sn,g0). Moreover, the Sobolev constants on (M,g) are precisely the optimal constants on the sphere (Sn,g0) if and only if (M,g) is isometric to (Sn,g0); in particular, the latter result answers a question of V.H. Nguyen.

Item Type: Article
Subjects: Q Science / természettudomány > QA Mathematics / matematika > QA73 Geometry / geometria
Q Science / természettudomány > QA Mathematics / matematika > QA74 Analysis / analízis
Depositing User: Dr. Alexandru Kristaly
Date Deposited: 25 Sep 2019 14:32
Last Modified: 25 Sep 2019 14:32
URI: http://real.mtak.hu/id/eprint/101253

Actions (login required)

Edit Item Edit Item