Kristály, Alexandru and Mezei, Ildikó-Ilona and Szilak, Karoly (2020) Differential inclusions involving oscillatory terms. Nonlinear Analysis: Theory, Methods and Applications. ISSN 0362-546X
|
Text
KMSz_Oscillation_final.pdf Download (471kB) | Preview |
Abstract
Motivated by mechanical problems where external forces are non-smooth, we consider the differential inclusion problem \[ \ \left\{ \begin{array}{lll} -\Delta u(x)\in \partial F(u(x))+\lambda \partial G(u(x))& {\rm in} & \Omega; \\ u\geq 0, &\mbox{in} & \Omega;\\ u= 0, &{\rm on}& \partial \Omega, \end{array}\right. \eqno{({\mathcal D}_\lambda)}\] where $\Omega \subset {\mathbb R}^n$ is a bounded open domain, and $\partial F$ and $\partial G$ stand for the generalized gradients of the locally Lipschitz functions $F$ and $G$. In this paper we provide a quite complete picture on the number of solutions of $({\mathcal D}_\lambda)$ whenever $\partial F$ oscillates near the origin/infinity and $\partial G$ is a generic perturbation of order $p>0$ at the origin/infinity, respectively. Our results extend in several aspects those of Krist\'aly and Moro\c sanu [\textit{J. Math. Pures Appl}., 2010].
Item Type: | Article |
---|---|
Subjects: | Q Science / természettudomány > QA Mathematics / matematika > QA73 Geometry / geometria Q Science / természettudomány > QA Mathematics / matematika > QA74 Analysis / analízis |
Depositing User: | Dr. Alexandru Kristaly |
Date Deposited: | 27 Sep 2020 16:34 |
Last Modified: | 27 Sep 2020 16:34 |
URI: | http://real.mtak.hu/id/eprint/114938 |
Actions (login required)
![]() |
Edit Item |