Kiss, Sándor and Sándor, Csaba (2021) Generalized asymptotic Sidon basis. DISCRETE MATHEMATICS, 344 (2). ISSN 0012-365X
|
Text
kézirat4.pdf Download (253kB) | Preview |
Abstract
Let $h,k \ge 2$ be integers. We say a set $A$ of positive integers is an asymptotic basis of order $k$ if every large enough positive integer can be represented as the sum of $k$ terms from $A$. A set of positive integers $A$ is called $B_{h}[g]$ set if all positive integers can be represented as the sum of $h$ terms from $A$ at most $g$ times. In this paper we prove the existence of $B_{h}[1]$ sets which are asymptotic bases of order $2h+1$ by using probabilistic methods.
Item Type: | Article |
---|---|
Subjects: | Q Science / természettudomány > QA Mathematics / matematika Q Science / természettudomány > QA Mathematics / matematika > QA71 Number theory / számelmélet |
Depositing User: | Dr Sándor Kiss |
Date Deposited: | 20 Sep 2021 10:20 |
Last Modified: | 03 Apr 2023 07:21 |
URI: | http://real.mtak.hu/id/eprint/129818 |
Actions (login required)
Edit Item |