Csajbók, Bence and Marino, G. and Polverino, O. (2018) Classes and equivalence of linear sets in PG(1, q(n)). JOURNAL OF COMBINATORIAL THEORY SERIES A, 157. pp. 402-426. ISSN 0097-3165
|
Text
1607.06962.pdf Download (289kB) | Preview |
Abstract
The equivalence problem of F-q-linear sets of rank n of PG(1, q(n)) is investigated, also in terms of the associated variety, projecting configurations,]Fq-linear blocking sets of Redei type and MRD-codes. We call an F-q-linear set L-U of rank n in PG(W,F-qn) = PG(1, q(n)) simple if for any n-dimensional F-q-subspace V of W, L-v is P Gamma L(2, q(n))-equivalent to L-U only when U and V lie on the same orbit of Gamma L(2, q(n)). We prove that U = {(x,Tr q(n)/q (x)): x is an element of F-qn defines a simple]Fq-linear set for each n. We provide examples of non-simple linear sets not of pseudoregulus type for n > 4 and we prove that all F-q-linear sets of rank 4 are simple in PG(1, q(4)). (C) 2018 Elsevier Inc. All rights reserved.
Item Type: | Article |
---|---|
Subjects: | Q Science / természettudomány > Q1 Science (General) / természettudomány általában |
SWORD Depositor: | MTMT SWORD |
Depositing User: | MTMT SWORD |
Date Deposited: | 08 Mar 2023 15:26 |
Last Modified: | 08 Mar 2023 15:26 |
URI: | http://real.mtak.hu/id/eprint/161775 |
Actions (login required)
![]() |
Edit Item |