REAL

Increasing the Robustness of Deep Learning Models for Object Segmentation: A Framework for Blending Automatically Annotated Real and Synthetic Data

Károly, Artúr István and Tirczka, Sebestyén and Gao, Huijun and Rudas, Imre J. and Galambos, Péter (2023) Increasing the Robustness of Deep Learning Models for Object Segmentation: A Framework for Blending Automatically Annotated Real and Synthetic Data. IEEE TRANSACTIONS ON CYBERNETICS. pp. 1-14. ISSN 2168-2267 (print); 2168-2275 (online)

[img]
Preview
Text
05_CYB23-DL.pdf
Available under License Creative Commons Attribution.

Download (5MB) | Preview
Item Type: Article
Subjects: Q Science / természettudomány > QA Mathematics / matematika > QA76.76 Software Design and Development / Szoftvertervezés és -fejlesztés
SWORD Depositor: MTMT SWORD
Depositing User: MTMT SWORD
Date Deposited: 26 Sep 2023 08:58
Last Modified: 26 Sep 2023 08:58
URI: http://real.mtak.hu/id/eprint/174941

Actions (login required)

Edit Item Edit Item