Aleandro, María J. (2023) Derivations of convolution algebras on finite permutation semigroups. ACTA MATHEMATICA ACADEMIAE PAEDAGOGICAE NYÍREGYHÁZIENSIS, 34 (1). pp. 57-64. ISSN 1786-0091
| 
 | Text 2434.pdf Download (312kB) | Preview | 
      Official URL: http://www.emis.de/journals/AMAPN/index.html
    
  
  
    Abstract
If n ∈ N let Sn be the lexicographically ordered discrete semigroup of permutations of {1, . . . , n}. Our matter is to seek about the structure and behauviour of derivations of the convolution algebra l 1 (Sn). This problem has its own interest even in the finite case and emerges from studies of several kinds of amenability on Banach algebras supported on infinite discrete groups or semigroups.
| Item Type: | Article | 
|---|---|
| Subjects: | Q Science / természettudomány > QA Mathematics / matematika | 
| SWORD Depositor: | MTMT SWORD | 
| Depositing User: | Zsolt Baráth | 
| Date Deposited: | 08 Feb 2024 08:35 | 
| Last Modified: | 08 Feb 2024 08:35 | 
| URI: | http://real.mtak.hu/id/eprint/187850 | 
Actions (login required)
|  | Edit Item | 



