Aleandro, María J. (2023) Derivations of convolution algebras on finite permutation semigroups. ACTA MATHEMATICA ACADEMIAE PAEDAGOGICAE NYÍREGYHÁZIENSIS, 34 (1). pp. 57-64. ISSN 1786-0091
|
Text
2434.pdf Download (312kB) | Preview |
Official URL: http://www.emis.de/journals/AMAPN/index.html
Abstract
If n ∈ N let Sn be the lexicographically ordered discrete semigroup of permutations of {1, . . . , n}. Our matter is to seek about the structure and behauviour of derivations of the convolution algebra l 1 (Sn). This problem has its own interest even in the finite case and emerges from studies of several kinds of amenability on Banach algebras supported on infinite discrete groups or semigroups.
| Item Type: | Article |
|---|---|
| Subjects: | Q Science / természettudomány > QA Mathematics / matematika |
| SWORD Depositor: | MTMT SWORD |
| Depositing User: | Zsolt Baráth |
| Date Deposited: | 08 Feb 2024 08:35 |
| Last Modified: | 08 Feb 2024 08:35 |
| URI: | http://real.mtak.hu/id/eprint/187850 |
Actions (login required)
![]() |
Edit Item |




