Bartha, Zsolt and Telcs, András (2014) Quenched Invariance Principle for the Random Walk on the Penrose Tiling. MARKOV PROCESSES AND RELATED FIELDS, 20 (4). pp. 751-767. ISSN 1024-2953
|
Text
1311.7023.pdf Available under License Creative Commons Attribution. Download (490kB) | Preview |
Abstract
We consider the simple random walk on the graph corresponding to a Penrose tiling. We prove that the path distribution of the walk converges weakly to that of a non-degenerate Brownian motion for almost every Penrose tiling with respect to the appropriate invariant measure on the set of tilings. Our tool for this is the corrector method.
Item Type: | Article |
---|---|
Subjects: | Q Science / természettudomány > Q1 Science (General) / természettudomány általában |
SWORD Depositor: | MTMT SWORD |
Depositing User: | MTMT SWORD |
Date Deposited: | 03 Apr 2024 13:56 |
Last Modified: | 03 Apr 2024 13:56 |
URI: | https://real.mtak.hu/id/eprint/191527 |
Actions (login required)
Edit Item |