REAL

Quenched Invariance Principle for the Random Walk on the Penrose Tiling

Bartha, Zsolt and Telcs, András (2014) Quenched Invariance Principle for the Random Walk on the Penrose Tiling. MARKOV PROCESSES AND RELATED FIELDS, 20 (4). pp. 751-767. ISSN 1024-2953

[img]
Preview
Text
1311.7023.pdf
Available under License Creative Commons Attribution.

Download (490kB) | Preview

Abstract

We consider the simple random walk on the graph corresponding to a Penrose tiling. We prove that the path distribution of the walk converges weakly to that of a non-degenerate Brownian motion for almost every Penrose tiling with respect to the appropriate invariant measure on the set of tilings. Our tool for this is the corrector method.

Item Type: Article
Subjects: Q Science / természettudomány > Q1 Science (General) / természettudomány általában
SWORD Depositor: MTMT SWORD
Depositing User: MTMT SWORD
Date Deposited: 03 Apr 2024 13:56
Last Modified: 03 Apr 2024 13:56
URI: https://real.mtak.hu/id/eprint/191527

Actions (login required)

Edit Item Edit Item