Bárány, Imre (2024) Positive bases, cones, Helly type theorems. MATHEMATICA SLOVACA, Accept. ISSN 0139-9918
|
Text
2308.10106.pdf Download (129kB) | Preview |
Abstract
Assume that k≤d is a positive integer and $\C$ is a finite collection of convex bodies in $\R^d$. We prove a Helly type theorem: If for every subfamily $\C^*\subset \C$ of size at most max{d+1,2(d−k+1)} the set $\bigcap \C^*$ contains a k-dimensional cone, then so does $\bigcap \C.$ One ingredient in the proof is another Helly type theorem about the dimension of lineality spaces of convex cones.
Item Type: | Article |
---|---|
Subjects: | Q Science / természettudomány > QA Mathematics / matematika |
SWORD Depositor: | MTMT SWORD |
Depositing User: | MTMT SWORD |
Date Deposited: | 05 Apr 2024 11:48 |
Last Modified: | 05 Apr 2024 11:48 |
URI: | https://real.mtak.hu/id/eprint/191881 |
Actions (login required)
![]() |
Edit Item |