Ligeti-Nagy, Noémi and Ferenczi, Gergő and Héja, Enikő and Laki, László János and Vadász, Noémi and Yang, Zijian Győző and Váradi, Tamás (2024) HuLU: Hungarian Language Understanding Benchmark Kit. In: Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024). LREC proceedings; COLT, Conference on Learning Theory . European Language Resources Association (ELRA), Online kiadás, pp. 8360-8371. ISBN 9782493814104
|
Text
2024.lrec-main.733.pdf - Published Version Download (805kB) | Preview |
Abstract
The paper introduces the Hungarian Language Understanding (HuLU) benchmark, a comprehensive assessment framework designed to evaluate the performance of neural language models on Hungarian language tasks. Inspired by the renowned GLUE and SuperGLUE benchmarks, HuLU aims to address the challenges specific to Hungarian language processing. The benchmark consists of various datasets, each representing different linguistic phenomena and task complexities. Moreover, the paper presents a web service developed for HuLU, offering a user-friendly interface for model evaluation. This platform not only ensures consistent assessment but also fosters transparency by maintaining a leaderboard showcasing model performances. Preliminary evaluations of various LMMs on HuLU datasets indicate that while Hungarian models show promise, there’s room for improvement to match the proficiency of English-centric models in their native language.
Item Type: | Book Section |
---|---|
Uncontrolled Keywords: | benchmarking, evaluation, less-resourced languages, Hungarian |
Subjects: | P Language and Literature / nyelvészet és irodalom > P0 Philology. Linguistics / filológia, nyelvészet Q Science / természettudomány > QA Mathematics / matematika > QA75 Electronic computers. Computer science / számítástechnika, számítógéptudomány Q Science / természettudomány > QA Mathematics / matematika > QA76.76 Software Design and Development / Szoftvertervezés és -fejlesztés |
SWORD Depositor: | MTMT SWORD |
Depositing User: | MTMT SWORD |
Date Deposited: | 23 Jan 2025 10:11 |
Last Modified: | 23 Jan 2025 10:11 |
URI: | https://real.mtak.hu/id/eprint/214150 |
Actions (login required)
![]() |
Edit Item |