Lángi, Zsolt and Naszódi, Márton (2015) On multiple Borsuk numbers in normed spaces. STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA. ISSN 0081-6906 (Submitted)
| 
 | Text multiNormedBorsuk20131126.pdf Download (323kB) | Preview | 
Abstract
Hujter and Lángi defined the k-fold Borsuk number of a set S in Euclidean n-space of diameter d > 0 as the smallest cardinality of a family F of subsets of S, of diameters strictly less than d, such that every point of S belongs to at least k members of F. We investigate whether a k-fold Borsuk covering of a set S in a �nite dimensional real normed space can be extended to a completion of S. Furthermore, we determine the k-fold Borsuk number of sets in not angled normed planes, and give a partial characterization for sets in angled planes.
| Item Type: | Article | 
|---|---|
| Subjects: | Q Science / természettudomány > QA Mathematics / matematika > QA73 Geometry / geometria | 
| Depositing User: | Dr. Zsolt Lángi | 
| Date Deposited: | 11 Sep 2015 11:43 | 
| Last Modified: | 03 Apr 2023 08:31 | 
| URI: | http://real.mtak.hu/id/eprint/26389 | 
Actions (login required)
|  | Edit Item | 



