Bujtás, Csilla and Patkós, Balázs and Tuza, Zsolt and Vizer, Máté (2017) The minimum number of vertices in uniform hypergraphs with given domination number. Discrete Mathematics, 340 (11). pp. 2704-2713. ISSN 0012-365X
|
Text
main.pdf Download (382kB) | Preview |
Abstract
The \textit{domination number} $\gamma(\cH)$ of a hypergraph $\cH=(V(\cH),E(\cH))$ is the minimum size of a subset $D\subset V(\cH)$ of the vertices such that for every $v\in V(\cH)\setminus D$ there exist a vertex $d \in D$ and an edge $H\in E(\cH)$ with $v,d\in H$. We address the problem of finding the minimum number $n(k,\gamma)$ of vertices that a $k$-uniform hypergraph $\cH$ can have if $\gamma(\cH)\ge \gamma$ and $\cH$ does not contain isolated vertices. We prove that $$n(k,\gamma)=k+\Theta(k^{1-1/\gamma})$$ and also consider the $s$-wise dominating and the distance-$l$ dominating version of the problem. In particular, we show that the minimum number $n_{dc}(k,\gamma, l)$ of vertices that a connected $k$-uniform hypergraph with distance-$l$ domination number $\gamma$ can have is roughly $\frac{k\gamma l}{2}$.
Item Type: | Article |
---|---|
Subjects: | Q Science / természettudomány > QA Mathematics / matematika Q Science / természettudomány > QA Mathematics / matematika > QA166-QA166.245 Graphs theory / gráfelmélet |
Depositing User: | Balázs Patkós |
Date Deposited: | 25 Sep 2016 17:12 |
Last Modified: | 04 Apr 2023 11:41 |
URI: | http://real.mtak.hu/id/eprint/39983 |
Actions (login required)
Edit Item |