Keszegh, Balázs and Zhu, Xuding (2016) Choosability and paintability of the lexicographic product of graphs. DISCRETE APPLIED MATHEMATICS. ISSN 0166-218X (Submitted)
|
Text
2015-12-07.pdf Download (261kB) | Preview |
Abstract
This paper studies the choice number and paint number of the lexicographic product of graphs. We prove that if $G$ has maximum degree $\Delta$, then for any graph $H$ on $n$ vertices $\ch(G[H]) \le (4\Delta+2)(\ch(H) +\log_2 n)$ and $\olch(G[H]) \le (4\Delta+2) (\olch(H)+ \log_2 n)$.
Item Type: | Article |
---|---|
Subjects: | Q Science / természettudomány > QA Mathematics / matematika > QA166-QA166.245 Graphs theory / gráfelmélet |
Depositing User: | Balázs Keszegh |
Date Deposited: | 03 Oct 2016 10:40 |
Last Modified: | 03 Oct 2016 10:40 |
URI: | http://real.mtak.hu/id/eprint/40916 |
Actions (login required)
Edit Item |