Maga, Péter (2017) Subconvexity for twisted L-functions over number fields via shifted convolution sums. Acta Mathematica Hungarica, 151 (1). pp. 232-257. ISSN 0236-5294 (print), 1588-2632 (online)
|
Text
subconvexity_for_twisted_l_functions_over_number_fields_via_shifted_convolution_sums_u.pdf Download (276kB) | Preview |
Official URL: http://dx.doi.org/10.1007/s10474-016-0681-3
Abstract
Assume that π is a cuspidal automorphic GL2 representation over a number field F. Then for any Hecke character χ of conductor q, the subconvex bound L(1/2,π⊗χ)≪F,π,χ∞,εNq3/8+θ/4+ε holds for any ε>0, where θ is any constant towards the Ramanujan-Petersson conjecture (θ=7/64 is admissible). In these notes, we derive this bound from the spectral decomposition of shifted convolution sums worked out by the author in [21].
Item Type: | Article |
---|---|
Subjects: | Q Science / természettudomány > QA Mathematics / matematika |
SWORD Depositor: | MTMT SWORD |
Depositing User: | MTMT SWORD |
Date Deposited: | 16 Feb 2017 13:06 |
Last Modified: | 16 Feb 2017 13:06 |
URI: | http://real.mtak.hu/id/eprint/49320 |
Actions (login required)
![]() |
Edit Item |