Maga, Péter (2017) The spectral decomposition of shifted convolution sums over number fields. JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK. pp. 1-22. ISSN 0075-4102
|
Text
the_spectral_decomposition_of_shifted_convolution_sums_over_number_fields.pdf Download (312kB) | Preview |
Official URL: http://dx.doi.org/10.1515/crelle-2016-0018
Abstract
Let π1, π2 be cuspidal automorphic representations of GL2 over a number field F with Hecke eigenvalues λπ1(m),λπ2(m). For nonzero integers l1,l2∈F and compactly supported functions W1,W2 on F×∞, a spectral decomposition of the shifted convolution sum ∑l1t1−l2t2=q0≠t1,t2∈nλπ1(t1n−1)λπ2(t2n−1)¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯N(t1t2n−2)√W1(l1t1)W2(l2t2)¯¯¯¯¯¯¯¯¯¯¯¯¯ is obtained for any nonzero fractional ideal n and any nonzero element q∈n.
Item Type: | Article |
---|---|
Additional Information: | Received: 2013-12-02 Revised: 2016-04-03 Published Online: 2016-07-12 |
Subjects: | Q Science / természettudomány > QA Mathematics / matematika |
SWORD Depositor: | MTMT SWORD |
Depositing User: | MTMT SWORD |
Date Deposited: | 16 Feb 2017 13:30 |
Last Modified: | 16 Feb 2017 13:30 |
URI: | http://real.mtak.hu/id/eprint/49321 |
Actions (login required)
![]() |
Edit Item |