REAL

On Saaty's and Koczkodaj's inconsistencies of pairwise comparison matrices

Bozóki, Sándor and Rapcsák, Tamás (2008) On Saaty's and Koczkodaj's inconsistencies of pairwise comparison matrices. Journal of Global Optimization, 42 (2). pp. 157-175. ISSN 0925-5001

[img]
Preview
Text
Bozoki2008Manuscript.pdf - Published Version

Download (228kB) | Preview
[img]
Preview
Text
BozokiRapcsak2008Manuscript.pdf

Download (828kB) | Preview

Abstract

The aim of the paper is to obtain some theoretical and numerical properties of Saaty's and Koczkodaj's inconsistencies of pairwise comparison matrices (PRM). In the case of 3x3 PRM, a differentiable one-to-one correspondence is given between Saaty's inconsistency ratio and Koczkodaj's inconsistency index based on the elements of PRM. In order to make a comparison of Saaty's and Koczkodaj's inconsistencies for 4x4 pairwise comparison matrices, the average value of the maximal eigenvalues of randomly generated nxn PRM is formulated, the elements aij (i<j) of which were randomly chosen from the ratio scale 1/M, 1/(M-1), ... , 1/2, 1, 2, ..., M-1, M with equal probability 1/(2M-1) and aji is defined as 1/aij. By statistical analysis, the empirical distributions of the maximal eigenvalues of the PRM depending on the dimension number are obtained. As the dimension number increases, the shape of distributions gets similar to that of the normal ones. Finally, the inconsistency of asymmetry is dealt with, showing a different type of inconsistency.

Item Type: Article
Subjects: H Social Sciences / társadalomtudományok > HB Economic Theory / közgazdaságtudomány
H Social Sciences / társadalomtudományok > HB Economic Theory / közgazdaságtudomány > HB5 Mathematical economics / matematikai közgazdaságtan
Q Science / természettudomány > QA Mathematics / matematika
Q Science / természettudomány > QA Mathematics / matematika > QA72 Algebra / algebra
Depositing User: Dr. Sándor Bozóki
Date Deposited: 11 Sep 2018 12:29
Last Modified: 11 Sep 2018 12:29
URI: http://real.mtak.hu/id/eprint/83501

Actions (login required)

Edit Item Edit Item