Danka, Tivadar and Totik, Vilmos (2018) Christoffel functions with power type weights. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 20 (3). pp. 747-796. ISSN 1435-9855
|
Text
all.pdf - Submitted Version Download (431kB) | Preview |
|
Text
christoffel_functions_with_power_type_weights.pdf - Published Version Restricted to Repository staff only Download (328kB) |
Abstract
Precise asymptotics for Christoffel functions are established for power type weights on unions of Jordan curves and arcs. The asymptotics involve the equilibrium measure of the support of the measure. The result at the endpoints of arc components is obtained from the corresponding asymptotics for internal points with respect to a different power weight. On curve components the asymptotic formula is proved via a sharp form of Hilbert's lemniscate theorem while taking polynomial inverse images. The situation is completely different on the arc components, where the local asymptotics is obtained via a discretization of the equilibrium measure with respect to the zeros of an associated Bessel function. The proofs are potential theoretical, and fast decreasing polynomials play an essential role in them.
Item Type: | Article |
---|---|
Subjects: | Q Science / természettudomány > QA Mathematics / matematika Q Science / természettudomány > QA Mathematics / matematika > QA74 Analysis / analízis |
Depositing User: | Dr. Béla Nagy |
Date Deposited: | 07 Jan 2019 09:01 |
Last Modified: | 05 Apr 2023 07:54 |
URI: | http://real.mtak.hu/id/eprint/89245 |
Actions (login required)
Edit Item |