Füredi, Zoltán and Kostochka, Alexandr and Luo, Ruth (2019) Avoiding long Berge cycles. JOURNAL OF COMBINATORIAL THEORY SERIES B, 137. pp. 55-64. ISSN 0095-8956
|
Text
1805.04195v2.pdf Download (363kB) | Preview |
Official URL: https://doi.org/10.1016/j.jctb.2018.12.001
Abstract
Let n≥k≥r+3 and H be an n-vertex r-uniform hypergraph. We show that if |H|>[Formula presented](k−1r) then H contains a Berge cycle of length at least k. This bound is tight when k−2 divides n−1. We also show that the bound is attained only for connected r-uniform hypergraphs in which every block is the complete hypergraph Kk−1 (r). © 2018
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Extremal hypergraph theory; Berge cycles; |
Subjects: | Q Science / természettudomány > QA Mathematics / matematika > QA166-QA166.245 Graphs theory / gráfelmélet |
SWORD Depositor: | MTMT SWORD |
Depositing User: | MTMT SWORD |
Date Deposited: | 04 Sep 2019 14:22 |
Last Modified: | 04 Sep 2019 14:22 |
URI: | http://real.mtak.hu/id/eprint/98599 |
Actions (login required)
Edit Item |