REAL

Current insights into the green synthesis, in planta characterization and phytoeffects of nickel nanoparticles and their agricultural implications

Kondak, Selahattin and Kondak, Dóra and Kabadayi, Onur and Erdei, László and Rónavári, Andrea and Kónya, Zoltán and Galbács, Gábor and Kolbert, Zsuzsanna (2024) Current insights into the green synthesis, in planta characterization and phytoeffects of nickel nanoparticles and their agricultural implications. ENVIRONMENTAL RESEARCH, 260. ISSN 0013-9351

[img]
Preview
Text
NinanoparticlesinplantareviewEnvironRes2024.pdf - Published Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (2MB) | Preview

Abstract

The intensifying production and release into the environment as well as the increasing potential in agricultural applications make the relationship between plants and nickel nanoparticles (Ni NPs) a relevant and timely topic. The aim of this review is to give an overview and discuss the latest findings about the relationship of Ni NPs and plants. Ni NPs can be synthesized using phytochemicals derived from plant parts in an environmentally friendly manner. There are several ways for these nanoparticles to enter plant cells and tissues. This can be demonstrated through various imaging and chemical mapping approaches (e.g., transmission electron microscopy, X-ray fluorescence spectroscopy etc.). NiO NPs affect plants at multiple levels, including subcellular, cellular, tissue, organ, and whole-plant levels. However, the effects of Ni NPs on plants’ ecological partners (e.g., rhizobiome, pollinators) remain largely unknown despite their ecotoxicological significance. The main cause of the Ni NPs-triggered damages is the reactive oxygen species imbalance as a consequence of the modulation of antioxidants. In non-tolerant plants, the toxicity of NiO NPs can be mitigated by exogenous treatments such as the application of silicon, salicylic acid, or jasmonic acid, which induce defense mechanisms whereas Ni-hypertolerant plant species possess endogenous defense systems, such as cell wall modifications and nitrosative signaling against NiO NP stress. Research highlights the role of Ni NPs in managing fungal diseases, showcasing their antifungal properties against specific pathogens. Due to the essentiality of Ni, the application of Ni NPs as nanofertilizers might be promising and has recently started to come into view.

Item Type: Article
Uncontrolled Keywords: Nanoparticles, Nickel oxide, Plants, Phytotoxicity, Nanofertilizers, Nanofungicides
Subjects: Q Science / természettudomány > Q1 Science (General) / természettudomány általában
SWORD Depositor: MTMT SWORD
Depositing User: MTMT SWORD
Date Deposited: 19 Dec 2024 15:32
Last Modified: 19 Dec 2024 15:32
URI: https://real.mtak.hu/id/eprint/212152

Actions (login required)

Edit Item Edit Item