REAL

Full-parameter fine-tuning vs. LoRA fine-tuning on PULI models

Varga, Kristóf and Hatvani, Péter and Yang, Zijian Győző (2025) Full-parameter fine-tuning vs. LoRA fine-tuning on PULI models. In: Proceedings of the International Conference on Formal Methods and Foundations of Artificial Intelligence. Eszterházy Károly Katolikus Egyetem Líceum Kiadó, Eger, pp. 226-232. ISBN 9789634963035

[img]
Preview
Text
fmfai2025_pp226-232.pdf - Published Version

Download (584kB) | Preview

Abstract

In this study, we compare full-parameter fine-tuning and parameter- efficient LoRA on various Hungarian PULI large language models, evaluating their performance across six Hungarian language understanding benchmarks. While full-parameter fine-tuning updates all model weights and requires substantial computational resources, LoRA adapts a smaller subset of parameters, enabling more efficient training. Our experiments on the monolingual PULI 3SX and the multilingual LlumiX and LlumiX-Llama-3.1 models reveal that LoRA consistently matches or surpasses full fine-tuning on most tasks, particularly when applied to larger models. Notably, LlumiXLlama- 3.1 with LoRA achieves state-of-the-art results on five out of six benchmarks while significantly reducing resource demands. These findings highlight LoRA’s potential as a scalable and effective fine-tuning method for Hungarian large language models.

Item Type: Book Section
Additional Information: International Conference on Formal Methods and Foundations of Artificial Intelligence, Eger, June 5–7, 2025
Uncontrolled Keywords: LoRA, PULI models, HuLU benchmarks, fine-tuning, parameterefficient adaptation
Subjects: Q Science / természettudomány > QA Mathematics / matematika > QA75 Electronic computers. Computer science / számítástechnika, számítógéptudomány
Depositing User: Tibor Gál
Date Deposited: 30 Oct 2025 13:18
Last Modified: 30 Oct 2025 14:44
URI: https://real.mtak.hu/id/eprint/227760

Actions (login required)

Edit Item Edit Item