Tóth, Zsolt György and Farkas, Péter and Novotni, Adrienn (2024) Individual tree detection and spatial distribution analysis without reference data. DIMENZIÓK: MATEMATIKAI KÖZLEMÉNYEK, 12. pp. 33-41. ISSN 2064-2172
|
Text
dimenziok-12evf-2024-12k-033-041.pdf - Published Version Available under License Creative Commons Attribution Non-commercial Share Alike. Download (2MB) | Preview |
Abstract
This study processed two 100x100m areas from LiDAR dataset: a forest and a mixed forest-plantation. Progressive Morphological Filtering (PMF) and Local Maximum Filtering (LMF) methods identified 257 trees in the forest and 47 in the mixed area, showing (depending on the method) partly random, partly regular spacing in the forest and clustering in mixed areas. The density assessments and nearest-neighbour evaluations with G statistic, K statistic, Monte Carlo method, and quadrat tests revealed a significant difference in tree distribution, highlighting the effectiveness of these methods for detecting spatial patterns in diverse forest environments, too.
| Item Type: | Article |
|---|---|
| Uncontrolled Keywords: | G statistic, K statistic, Monte Carlo method, quadrat test |
| Subjects: | Q Science / természettudomány > QA Mathematics / matematika S Agriculture / mezőgazdaság > SD Forestry / erdőgazdaság |
| SWORD Depositor: | MTMT SWORD |
| Depositing User: | MTMT SWORD |
| Date Deposited: | 03 Nov 2025 15:03 |
| Last Modified: | 03 Nov 2025 15:03 |
| URI: | https://real.mtak.hu/id/eprint/227987 |
Actions (login required)
![]() |
Edit Item |




