REAL

On the class number of pairs of binary quadratic forms

Biró, András (2025) On the class number of pairs of binary quadratic forms. JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 37 (3). pp. 897-924. ISSN 1246-7405

[img]
Preview
Text
JTNB_2025__37_3_897_0.pdf - Published Version
Available under License Creative Commons Attribution No Derivatives.

Download (845kB) | Preview

Abstract

If d 1 , d 2 , t ∈ ℤ , let h ( d 1 , d 2 , t ) be the number of SL 2 ( ℤ ) -equivalence classes of pairs ( Q 1 , Q 2 ) of quadratic forms with integer coefficients satisfying that the discriminant of Q i is d i , and the codiscriminant of Q 1 and Q 2 is t . We give an explicit formula for h ( d 1 , d 2 , t ) assuming that d i is not a square of an integer ( i = 1 , 2 ) , and t 2 - d 1 d 2 ≠ 0 . Previously such formulas were known only under some coprimality conditions.

Item Type: Article
Subjects: Q Science / természettudomány > QA Mathematics / matematika
SWORD Depositor: MTMT SWORD
Depositing User: MTMT SWORD
Date Deposited: 05 Feb 2026 10:19
Last Modified: 05 Feb 2026 10:19
URI: https://real.mtak.hu/id/eprint/233371

Actions (login required)

Edit Item Edit Item