Biró, András (2025) On the class number of pairs of binary quadratic forms. JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 37 (3). pp. 897-924. ISSN 1246-7405
|
Text
JTNB_2025__37_3_897_0.pdf - Published Version Available under License Creative Commons Attribution No Derivatives. Download (845kB) | Preview |
Official URL: https://doi.org/10.5802/jtnb.1346
Abstract
If d 1 , d 2 , t ∈ ℤ , let h ( d 1 , d 2 , t ) be the number of SL 2 ( ℤ ) -equivalence classes of pairs ( Q 1 , Q 2 ) of quadratic forms with integer coefficients satisfying that the discriminant of Q i is d i , and the codiscriminant of Q 1 and Q 2 is t . We give an explicit formula for h ( d 1 , d 2 , t ) assuming that d i is not a square of an integer ( i = 1 , 2 ) , and t 2 - d 1 d 2 ≠ 0 . Previously such formulas were known only under some coprimality conditions.
| Item Type: | Article |
|---|---|
| Subjects: | Q Science / természettudomány > QA Mathematics / matematika |
| SWORD Depositor: | MTMT SWORD |
| Depositing User: | MTMT SWORD |
| Date Deposited: | 05 Feb 2026 10:19 |
| Last Modified: | 05 Feb 2026 10:19 |
| URI: | https://real.mtak.hu/id/eprint/233371 |
Actions (login required)
![]() |
Edit Item |




