REAL

Finite element methods for fractional-order diffusion problems with optimal convergence order

Maros, Gábor and Izsák, Ferenc (2020) Finite element methods for fractional-order diffusion problems with optimal convergence order. Computers and Mathematics with Applications, 80 (10). pp. 2105-2114. ISSN 0898-1221

[img]
Preview
Text
1-s2.0-S089812212030362X-main.pdf

Download (483kB) | Preview

Abstract

A convergence result is stated for the numerical solution of space-fractional diffusion problems. For the spatial discretization, an arbitrary family of finite elements can be used combined with the matrix transformation technique. The analysis covers the application of the implicit Euler method for time integration to ensure unconditional stability. The spatial convergence rate does not depend on the fractional power of the Laplacian operator. An efficient numerical implementation is developed avoiding the direct computation of matrix powers.

Item Type: Article
Subjects: Q Science / természettudomány > QA Mathematics / matematika > QA74 Analysis / analízis
Depositing User: Ferenc Izsák
Date Deposited: 26 Mar 2021 13:50
Last Modified: 03 Apr 2023 07:11
URI: http://real.mtak.hu/id/eprint/123032

Actions (login required)

Edit Item Edit Item