Gát, György (2009) Kutatások a diadikus harmonikus analízis körében = Research in dyadic harmonic analysis. Project Report. OTKA.
|
PDF
48780_ZJ1.pdf Download (102kB) |
Abstract
A pályázat keretében írott cikkek között számosban foglalkoztam egy és kétváltozós integrálható függvények logaritmikus közepeinek konvergenciájával. Többek között vizsgáltuk, hogy mi a legbővebb norma konvergencia tér. A kutatási időszak fő eredménye: Gát, G.: Pointwise convergence of cone-like restricted two-dimensional (C,1) means of trigonometric Fourier series, Journal of Approximation Theory, 149 (1) (2007), 74-102. Marcinkiewicz és Zygmund 1939-ben igazolta kétváltozós trigonometrikus Fourier sorok Fejér közepeivel kapcsolatban, hogy a integrálható függvények kétdimenziós Fejér közepei majdnem mindenütt a függvényhez tartanak, hacsak az közepek indexei úgy tartanak végtelenbe, hogy a hányadosuk korlátos, azaz egy egyenes köré húzott kúpban maradnak. A nevezett cikkben igazoltam, hogy, ha az egyenest helyettesítjük egy függvény görbéjével, azaz egy ''görbe köré húzott kúpban maradnak az indexek'', akkor is igaz marad a majdnem mindenütti konvergencia. Továbbá, ha a "kúp jellegű" halmaz "végtelenül bővül", akkor a tétel már nem fog teljesülni. | Among the papers written in the project I discussed the convergence of logarithmic means of one and two dimensional functions in several papers. Among others, we determinded the largest norm convergence space. The main result of the project is: Gát, G.: Pointwise convergence of cone-like restricted two-dimensional (C,1) means of trigonometric Fourier series, Journal of Approximation Theory, 149 (1) (2007), 74-102. In 1939 Marcinkiewicz and Zygmund proved with respect to the Fejér means of the trigonometric Fourier series of two variable integrable functions that if the ratio of the indices of the means remain bounded as they tend to infinity (in other words, they remain in some positive cone around of the identical function), then the Fejér means converge to the function almost everywhere. In my paper above I verified the same result for a more general case. That is, the identical function can be substituted by an "arbitrary" function. That is, the set of indices remain in a "cone-like" set ("a cone around a curve"). Moreover, if the "cone-like set" enlarges "infinitely", then the theorem fails to hold.
Item Type: | Monograph (Project Report) |
---|---|
Uncontrolled Keywords: | Matematika |
Subjects: | Q Science / természettudomány > QA Mathematics / matematika |
Depositing User: | Mr. Andras Holl |
Date Deposited: | 08 May 2009 11:00 |
Last Modified: | 30 Nov 2010 15:50 |
URI: | http://real.mtak.hu/id/eprint/1866 |
Actions (login required)
Edit Item |