Turi, László and Rossky, Peter (2004) Critical evaluation of approximate quantum decoherence rates for an electronic transition in methanol solution. Journal of Chemical Physics, 120 (8). pp. 3688-3698. ISSN ISSN 1089-7690
|
PDF
MS_repository_JCP_2004_120_3688.pdf Download (269kB) |
Abstract
We present a quantum molecular dynamics calculation of a semiclassical decoherence function to evaluate the accuracy of alternative short-time approximations for coherence loss in the dynamics of condensed phase electronically non-adiabatic processes. The semiclassical function from mixed quantum-classical molecular dynamics simulations and frozen Gaussian wave packets is computed for the electronic transition of an excited state excess electron to the ground state in liquid methanol. The decoherence function decays on a 10 fs timescale qualitatively similar to the aqueous case. We demonstrate that it is the motion of the hydrogen atom, and in particular, the hydrogen rotation around the oxygen-methyl bond which is predominantly responsible for destroying the quantum correlations between alternative states. Multiple timescales due to the slower diffusive nuclear modes, which dominate the solvation response of methanol, do not contribute to the coherence loss. The choice of the coordinate representation is investigated in detail and concluded to be irrelevant to the decay. Changes in both nuclear momenta and positions on the two alternative potential surfaces are found to contribute to decoherence, the former dominating at short times (t < 5 fs), the latter controlling the decay at longer times. Various short-time approximations to the full dynamics for the decoherence function are tested for the first time. The present treatment rigorously develops the short-time description and establishes its range of validity. Whereas the lowest-order short-time approximation proves to be a very good approximation up to about 5 fs, we also find that it bounds the decay of the decoherence function. After 5 fs, the coherence decay in fact becomes faster than the single Gaussian predicted in the lowest-order short-time limit. This decay is well reflected by an enhanced low-order approximation, which is also easily computed from equilibrium classical forces.
Item Type: | Article |
---|---|
Subjects: | Q Science / természettudomány > QD Chemistry / kémia > QD02 Physical chemistry / fizikai kémia |
Depositing User: | Dr. Túri László |
Date Deposited: | 03 Aug 2012 04:49 |
Last Modified: | 03 Aug 2012 04:49 |
URI: | http://real.mtak.hu/id/eprint/2998 |
Actions (login required)
Edit Item |