Frankl, Péter and Tokushige, N. (2016) Uniform eventown problems. EUROPEAN JOURNAL OF COMBINATORICS, 51. pp. 280-286. ISSN 0195-6698
![]() |
Text
1_s2.0_S0195669815001353_main_u.pdf - Published Version Restricted to Registered users only Download (371kB) |
|
|
Text
44203.pdf - Submitted Version Download (69kB) | Preview |
Official URL: http://dx.doi.org/10.1016/j.ejc.2015.06.001
Abstract
Let n≥. k. l≥. 2 be integers, and let F be a family of k-element subsets of an n-element set. Suppose that l divides the size of the intersection of any two (not necessarily distinct) members in F. We prove that the size of F is at most ([n/l]<inf>[k/l]</inf>) provided n is sufficiently large for fixed k and l.
Item Type: | Article |
---|---|
Subjects: | Q Science / természettudomány > QA Mathematics / matematika |
SWORD Depositor: | MTMT SWORD |
Depositing User: | MTMT SWORD |
Date Deposited: | 03 Jan 2017 11:39 |
Last Modified: | 09 Jan 2017 08:09 |
URI: | http://real.mtak.hu/id/eprint/44203 |
Actions (login required)
![]() |
Edit Item |