Keszegh, Balázs and Zhu, Xuding (2017) Choosability and paintability of the lexicographic product of graphs. DISCRETE APPLIED MATHEMATICS, 223. pp. 84-90. ISSN 0166-218X
|
Text
1502.03977v2.pdf Download (146kB) | Preview |
Official URL: https://doi.org/10.1016/j.dam.2017.02.008
Abstract
This paper studies the choice number and paint number of the lexicographic product of graphs. We prove that if G has maximum degree Δ, then for any graph H on n vertices ch(G[H])≤(4Δ+2)(ch(H)+log2n) and χP(G[H])≤(4Δ+2)(χP(H)+log2n). © 2017 Elsevier B.V.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Mathematical techniques; Choosability; Combinatorial mathematics; Paintability; On-line choosability; list coloring; Lexicographic product; Game coloring; Choice number |
Subjects: | Q Science / természettudomány > QA Mathematics / matematika Q Science / természettudomány > QA Mathematics / matematika > QA166-QA166.245 Graphs theory / gráfelmélet |
SWORD Depositor: | MTMT SWORD |
Depositing User: | MTMT SWORD |
Date Deposited: | 19 Dec 2017 07:16 |
Last Modified: | 19 Dec 2017 07:16 |
URI: | http://real.mtak.hu/id/eprint/71209 |
Actions (login required)
Edit Item |