Kevei, Péter and Mason, David M. (2018) Bahadur–Kiefer representations for time dependent quantile processes. PERIODICA MATHEMATICA HUNGARICA, 76 (1). pp. 95-113. ISSN 0031-5303
|
Text
Kevei_Bahadur.pdf - Submitted Version Download (341kB) | Preview |
|
Text
Kevei_Bahadur-final.pdf - Published Version Restricted to Repository staff only Download (711kB) |
Official URL: https://doi.org/10.1007/s10998-017-0214-z
Abstract
We define a time dependent empirical process based on n independent fractional Brownian motions and describe strong approximations to it by Gaussian processes. They lead to strong approximations and functional laws of the iterated logarithm for the quantile or inverse of this empirical process. They are obtained via time dependent Bahadur–Kiefer representations.
Item Type: | Article |
---|---|
Subjects: | Q Science / természettudomány > QA Mathematics / matematika Q Science / természettudomány > QA Mathematics / matematika > QA74 Analysis / analízis |
Depositing User: | Dr. Béla Nagy |
Date Deposited: | 07 Jan 2019 08:28 |
Last Modified: | 05 Apr 2023 07:54 |
URI: | http://real.mtak.hu/id/eprint/89241 |
Actions (login required)
Edit Item |