Frankl, Péter and Tokushige, N. (2016) Uniform eventown problems. EUROPEAN JOURNAL OF COMBINATORICS, 51. pp. 280-286. ISSN 0195-6698
| 
              
Text
 1_s2.0_S0195669815001353_main_u.pdf - Published Version Restricted to Registered users only Download (371kB)  | 
          ||
  | 
            
              
Text
 44203.pdf - Submitted Version Download (69kB) | Preview  | 
          
      Official URL: http://dx.doi.org/10.1016/j.ejc.2015.06.001
    
  
  
    Abstract
Let n≥. k. l≥. 2 be integers, and let F be a family of k-element subsets of an n-element set. Suppose that l divides the size of the intersection of any two (not necessarily distinct) members in F. We prove that the size of F is at most ([n/l]<inf>[k/l]</inf>) provided n is sufficiently large for fixed k and l.
| Item Type: | Article | 
|---|---|
| Subjects: | Q Science / természettudomány > QA Mathematics / matematika | 
| SWORD Depositor: | MTMT SWORD | 
| Depositing User: | MTMT SWORD | 
| Date Deposited: | 03 Jan 2017 11:39 | 
| Last Modified: | 09 Jan 2017 08:09 | 
| URI: | http://real.mtak.hu/id/eprint/44203 | 
Actions (login required)
![]()  | 
        Edit Item | 




