REAL

Bahadur–Kiefer representations for time dependent quantile processes

Kevei, Péter and Mason, David M. (2018) Bahadur–Kiefer representations for time dependent quantile processes. PERIODICA MATHEMATICA HUNGARICA, 76 (1). pp. 95-113. ISSN 0031-5303

[img]
Preview
Text
Kevei_Bahadur.pdf - Submitted Version

Download (341kB) | Preview
[img] Text
Kevei_Bahadur-final.pdf - Published Version
Restricted to Repository staff only

Download (711kB)

Abstract

We define a time dependent empirical process based on n independent fractional Brownian motions and describe strong approximations to it by Gaussian processes. They lead to strong approximations and functional laws of the iterated logarithm for the quantile or inverse of this empirical process. They are obtained via time dependent Bahadur–Kiefer representations.

Item Type: Article
Subjects: Q Science / természettudomány > QA Mathematics / matematika
Q Science / természettudomány > QA Mathematics / matematika > QA74 Analysis / analízis
Depositing User: Dr. Béla Nagy
Date Deposited: 07 Jan 2019 08:28
Last Modified: 05 Apr 2023 07:54
URI: http://real.mtak.hu/id/eprint/89241

Actions (login required)

Edit Item Edit Item